Chapter 1 Outline

Functions

January 15, 2017 -
content

Section 1.1 - Introduction

  • Natural numbers
  • Integers
  • Rational numbers
  • Irrational numbers
  • Real numbers

Section 1.2 - The Real Line

  • Coordinate line
  • Inequality rules
    • Either $a<b$, or $b<a$, or $a=b$
    • If $a>b$, then $a+c>b+c$
    • If $a>b$ and $c>0$, then $ac>bc$
    • If $a>b$ and $c<0$, then $ac<bc$
  • Intervals
    • Set builder notation: $\{x\mid a<x<b\}$
    • Open intervals
    • Closed intervals
    • Unbounded intervals
    • Graphical representation
  • Sign charts
  • Union and intersection
  • Absolute value
    • Distance on the real line (1D)
    • Midpoints on the real line (1D)
  • Absolute value properties
    • $\vert ab\vert = \vert a\vert \cdot \vert b\vert$
    • $\left\vert \vert a\vert - \vert b\vert \right\vert \leq \vert a + b\vert \leq \vert a\vert + \vert b\vert$
    • $\vert x\vert < a$ if and only if $-a<x<a$
    • $\vert x\vert > a$ if and only if $x<-a$ or $x>a$

Section 1.3 - The Coordinate Plane

  • Coordinate plane (i.e. Cartesian plane or $xy$-plane)
    • Origin
    • $x$-axis
    • $y$-axis
    • Ordered pair (not to be confused with an interval)
    • Quadrants
  • Distance formula in the plane (2D)
  • Midpoint formula in the plane (2D)
  • Standard form of a circle
  • Completing the square

Section 1.4 - Equations and Graphs

  • Equation
    • Identity
    • Conditional equation
  • Graph of an equation
  • $x$-intercepts and $y$-intercept (collectively known as axis intercepts)
  • Symmetry
    • $x$-axis
    • $y$-axis
    • origin

Section 1.5 - Using Technology to Graph Equations

  • Viewing rectangle

Section 1.6 - Functions

  • Function / functional relationship
    • Independent variable
    • Dependent variable
    • Box notation
    • Note: $f(x)$ does not mean $f$ times $x$
  • Domain and range
    • Domain is the set of all inputs that make sense
    • Range is the set of all outputs that can be attained from some input in the domain
    • Finding domain and range from a graph
    • Range is not always possible to find precisely
  • Vertical line test
  • Piecewise defined functions
  • Rate of change
    • Difference quotient
    • Average rate of change
    • Instantaneous rate of change
  • Odd and even and neither functions
    • Even functions have graphs with $y$-axis symmetry. Analytic test: $f(-x)=f(x)$.
    • Odd functions have graphs with origin symmetry. Analytic test: $f(-x)=-f(x)$.
    • Functions do not need to be even or odd. For example $f(x)=x+1$ is neither.
  • Local maximums and local minimums

Section 1.7 - Linear Functions

  • Linear relationship / linear function
  • Slope of a line
    • Positive slopes
    • Negative slopes
    • Zero slope
  • Point-slope form: $y-\color{red}{y_1}=\color{red}{m}(x-\color{red}{x_1})$.
  • Slope-intercept form: $y = \color{red}{m}x+\color{red}{b}$.
  • In the above, the red variables are what we call parameters. They represent fixed quantities, rather than changing ones (like the independent and dependent variables $x$ and $y$ do). For a given problem, we usually want to replace parameters with specific values. This is not true of the variables $x$ and $y$.
  • Slopes of parallel and perpendicular lines
    • Parallel lines have the same slope
    • Perpendicular lines have opposite (negative) inverse (reciprocal) slopes
  • General linear equation

Section 1.8 - Quadratic Functions

  • Quadratic function
  • Parabola
  • Horizontal shifts. Let $c>0$.
    • $y = f(x+c)$ is a shift to the left.
    • $y = f(x-c)$ is a shift to the right.
  • Vertical shifts. Let $c>0$.
    • $y = f(x) + c$ is a shift up.
    • $y = f(x) - c$ is a shift down.
  • Graph of $y=\color{red}{a}x^2$
    • If $a<0$ parabola opens downward
    • If $a>0$ parabola opens upward
    • The larger $\vert a\vert$, the steeper the parabola
  • Standard form: $y=\color{red}{a}(x-\color{red}{x_1})^2 + \color{red}{y_1}$
  • Quadratic formula: solutions to $ax^2+bx+c=0$ are $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$
  • End behavior
    • as $x\to\infty$, $f(x)\to$
    • as $x\to-\infty$, $f(x)\to$